Three-Dimensional Object Recognition Using an Unsupervised BCM Network: The Usefulness of Distinguishing Features
نویسندگان
چکیده
We propose an object recognition scheme based on a method for feature extraction from gray level images that corresponds to recent statistical theory, called projection pursuit, and is derived from a biologically motivated feature extracting neuron. To evaluate the performance of this method we use a set of very detailed psychophysical 3D object recognition experiments (B ulthoo and Edelman, 1992).
منابع مشابه
Unsupervised BCM Network The Usefulness of Distinguishing Features
We propose an object recognition scheme based on a method for feature extraction from gray level images that corresponds to recent statistical theory, called pmjection pursuit, and is derived from a biologically motivated feature extracting neuron. To evaluate the performance of this method we use a set of very detailed psychophysical three-dimensional object recognition experiments (Biilthoff ...
متن کاملFeature Extraction Using an Unsupervised Neural Network
A novel unsupervised neural network for dimensionality reduction that seeks directions emphasizing multimodality is presented, and its connection to exploratory projection pursuit methods is discussed. This leads to a new statistical insight into the synaptic modification equations governing learning in Bienenstock, Cooper, and Munro (BCM) neurons (1982). The importance of a dimensionality redu...
متن کاملExploratory Feature Extraction in Speech Signals
A novel unsupervised neural network for dimensionality reduction which seeks directions emphasizing multimodality is presented, and its connection to exploratory projection pursuit methods is discussed. This leads to a new statistical insight to the synaptic modification equations governing learning in Bienenstock, Cooper, and Munro (BCM) neurons (1982). The importance of a dimensionality reduc...
متن کاملObjective function formulation of the BCM theory of visual cortical plasticity: Statistical connections, stability conditions
In this paper, we present an objective function formulation of the BCM theory of visual cortical plasticity that permits us to demonstrate the connection between the unsupervised BCM learning procedure and various statistical methods, in particular, that of Projection Pursuit. This formulation provides a general method for stability analysis of the xed points of the theory and enables us to ana...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural Computation
دوره 5 شماره
صفحات -
تاریخ انتشار 1993